
Supplemental Material

S1. Gradient of the polynomial approximation of AUC
The gradient of the approximate AUC with respect to the parameter 𝜃 is as follows,

𝜕𝐴𝑈𝐶𝑊𝑀𝑊(𝑃𝜃,𝜏)

𝜕𝜃
=

1

𝑛0𝑛1
∑ ∑ 𝛾𝜇𝑙 (

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝜃
𝑣(𝑃𝜃

𝜇−𝑙 , 𝐷!𝜏) + 𝑠(𝑃𝜃
𝑙 , 𝐷𝜏)

𝜕𝑣(𝑃𝜃
𝜇−𝑙,𝐷!𝜏)

𝜕𝜃
)

𝜇
𝑙=0

𝑑
𝜇=0 (S1)

Note that the calculation of 𝜕𝑠(𝑃𝜃
𝑙 , 𝐷𝜏)/𝜕𝜃 and 𝜕𝑣(𝑃𝜃

𝜇−𝑙 , 𝐷!𝜏)/𝜕𝜃 is similar, so we only explain

one of them. In particular,

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝜃
= ∑

𝜕[𝛿𝑖
𝜏𝑃𝜃(𝑦𝑖

𝜏|𝑿)]𝑙

𝜕𝜃
𝐿
𝑖=1 (S2)

Let 𝑄𝑖(𝑃𝜃) = [𝛿𝑖
𝜏𝑃𝜃(𝑦𝑖

𝜏|𝑥)]𝑙, then

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝜃
= ∑ [𝑄𝑖

′ ∙
𝜕𝑃𝜃(𝑦𝑖

𝜏|𝑿)

𝜕𝜃
]𝐿

𝑖=1 (S3)

Where 𝑄𝑖
′ is the gradient of 𝑄𝑖 with respect to the marginal probability 𝑃𝜃.

Since 𝑃𝜃(𝑦𝑖
𝜏|𝑿) =

1

𝑍(𝑿)
∙ ∑ [𝛿(𝑦𝑖 = 𝜏) ∙ exp (𝔽1:𝐿(𝑿, 𝒚, 𝜃))]𝒚1:𝐿

, applying the quotient rule we can

compute the gradient of equation (S3) as follows.

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝜃
= ∑ [

1

𝑍(𝑿)
∙ 𝑄𝑖

′ ∙ ∑ [𝛿(𝑦𝑖 = 𝜏) ∙
𝜕𝔽1:𝐿(𝑿,𝒚,𝜃)

𝜕𝜃
∙ exp(𝔽1:𝐿(𝑿, 𝒚, 𝜃))]𝒚1:𝐿

]𝐿
𝑖=1 ()

−
1

𝑍(𝑿)

𝜕𝑍(𝑿)

𝜕𝜃
∙ ∑ [𝑄𝑖

′ ∙ 𝑃𝜃(𝑦𝑖
𝜏|𝑿)]𝐿

𝑖=1 (S4)

The second term in equation (S4) could be calculated efficiently using forward-backward algorithm.

For parameter 𝑇 at position 𝑖, the gradient could be calculated as follow.

− ∑ ∑
𝛼(𝑢′,𝑖−1)∙𝛽(𝑢,𝑖)

𝑍(𝑿)
∙ exp(𝕗𝜃(𝑢′, 𝑢, 𝑿, 𝑖)) ∙𝑢𝑢′ 𝑓𝑢𝑛𝑐 ∙

𝜕𝑓𝜃(𝑢′,𝑢,𝑿,𝑖)

𝜕𝜃
 (S5)

For parameter 𝑈 at position 𝑖, the gradient could be calculated as follows.

− ∑
𝛼(𝑢,𝑖)∙𝛽(𝑢,𝑖)

𝑍(𝑿)
∙ 𝑓𝑢𝑛𝑐 ∙

𝜕𝑔𝜃(𝑢,𝑿,𝑖)

𝜕𝜃𝑢 (S6)

Where 𝑢 denotes one label, and

 𝑓𝑢𝑛𝑐 = ∑ [𝑄𝑖
′ ∙ 𝑃𝜃(𝑦𝑖

𝜏|𝑿)]𝐿
𝑖=1 (S7)

The forward function 𝛼(𝑢, 𝑖) and backward function 𝛽(𝑢, 𝑖) are defined as follows.

𝛼(𝑢, 𝑖) = ∑ 𝛿(𝑦𝑖 = 𝑢) ∙ exp(𝔽1:𝑖(𝑿, 𝒚, 𝜃))𝒚1:𝑖
 (S8)

𝛽(𝑢, 𝑖) = ∑ 𝛿(𝑦𝑖 = 𝑢) ∙ exp(𝔽𝑖+1:𝐿(𝑿, 𝒚, 𝜃))𝒚𝑖:𝐿
 (S9)

They can be calculated by dynamic programming as follows.

𝛼(𝑢, 𝑖) = ∑ 𝛼(𝑢′, 𝑖 − 1) ∙ exp(𝕗𝜃(𝑢′, 𝑢, 𝑿, 𝑖))𝑢′ (S10)

𝛽(𝑢, 𝑖) = ∑ 𝛽(𝑢′, 𝑖 + 1) ∙ exp(𝕗𝜃(𝑢, 𝑢′, 𝑿, 𝑖 + 1))𝑢′ (S11)

The gradient of the inner summation part of the first term in equation (S4) with respect to parameter

𝑇 at position 𝑖 could be calculated as follows.

∑ ∑ 𝜑(𝑢′, 𝑢, 𝑖) ∙ exp(𝕗𝜃(𝑢′, 𝑢, 𝑿, 𝑖)) ∙
𝜕𝑓𝜃(𝑢′,𝑢,𝑿,𝑖)

𝜕𝜃𝑢𝑢′ (S12)

Where 𝜑(𝑢′, 𝑢, 𝑖) = 𝑄𝑖
′ ∙ 𝛿(𝑦𝑖 = 𝜏) ∙

𝛼(𝑢′,𝑖−1)∙𝛽(𝑢,𝑖)

𝑍(𝑿)
+

𝛼𝜏(𝑢′,𝑖−1)∙𝛽(𝑢,𝑖)

𝑍(𝑿)
+

𝛼(𝑢′,𝑖−1)∙𝛽𝜏(𝑢,𝑖)

𝑍(𝑿)
 (S13)

Similarly, the inner summation part of the first term in equation (S4) with respect to parameter 𝑈 at

position 𝑖 could be calculated as follows

∑ 𝜙(𝑢, 𝑖) ∙
𝜕𝑔𝜃(𝑢,𝑿,𝑖)

𝜕𝜃𝑢 (S14)

Where 𝜙(𝑢, 𝑖) =
𝛼𝜏(𝑢,𝑖)∙𝛽(𝑢,𝑖)

𝑍(𝑿)
+

𝛼(𝑢,𝑖)∙𝛽𝜏(𝑢,𝑖)

𝑍(𝑿)
 (S15)

Here we define,

𝛼𝜏(𝑢, 𝑖) = ∑ ∑ 𝛿(𝑦𝑡 = 𝜏 ⋀ 𝑦𝑖 = 𝑢) ∙ 𝑄𝑡
′ ∙ exp(𝔽1:𝑖(𝑿, 𝒚, 𝜃))𝒚1:𝑖

𝑖
𝑡=1 (S16)

𝛽𝜏(𝑢, 𝑖) = ∑ ∑ 𝛿(𝑦𝑡 = 𝜏 ⋀ 𝑦𝑖 = 𝑢) ∙ 𝑄𝑡
′ ∙ exp(𝔽𝑖+1:𝐿(𝑿, 𝒚, 𝜃))𝒚𝑖:𝐿

𝐿
𝑡=𝑖+1 (S17)

Like the forward matrix 𝛼(𝑢, 𝑖) and backward matrix 𝛽(𝑢, 𝑖), 𝛼𝜏(𝑢, 𝑖) and 𝛽𝜏(𝑢, 𝑖) may also be

calculated by dynamic programming. In particular, given the initial conditions 𝛼𝜏(𝑢, 1) = 𝑄1
′ ∙ 𝛿(𝑢 =

𝜏) ∙ 𝛼(𝑢, 1) and 𝛽𝜏(𝑢, 𝐿) = 0, 𝛼𝜏(𝑢, 𝑖) and 𝛽𝜏(𝑢, 𝑖) can be computed by the following recurrences:

𝛼𝜏(𝑢, 𝑖) = ∑ [𝛼𝜏(𝑢′, 𝑖 − 1) + 𝑄𝑖
′ ∙ 𝛿(𝑢 = 𝜏) ∙ 𝛼(𝑢′, 𝑖 − 1)] ∙ exp(𝕗𝜃(𝑢′, 𝑢, 𝑿, 𝑖))𝑢′ (S18)

𝛽𝜏(𝑢, 𝑖) = ∑ [𝛽𝜏(𝑢′, 𝑖 + 1) + 𝑄𝑖+1
′ ∙ 𝛿(𝑢′ = 𝜏) ∙ 𝛽(𝑢′, 𝑖 + 1)] ∙ exp(𝕗𝜃(𝑢′, 𝑢, 𝑿, 𝑖))𝑢′ (S19)

Let 𝑎 and 𝑏 denote the labels at two adjacent sequence positions, then the gradient of equation (S4)

with respect to parameter 𝑇 is:

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝑇𝑎,𝑏
= ∑ [�̃�(𝑎, 𝑏, 𝑖) ∙ exp(𝕗𝜃(𝑎, 𝑏, 𝑿, 𝑖))]𝐿

𝑖=1 (S20)

Where �̃�(𝑎, 𝑏, 𝑖) = ()

𝑄𝑖
′ ∙ 𝛿(𝑦𝑖 = 𝜏) ∙

𝛼(𝑎,𝑖−1)∙𝛽(𝑏,𝑖)

𝑍(𝑿)
+

𝛼𝜏(𝑎,𝑖−1)∙𝛽(𝑏,𝑖)

𝑍(𝑿)
+

𝛼(𝑎,𝑖−1)∙𝛽𝜏(𝑏,𝑖)

𝑍(𝑿)
−

𝛼(𝑎,𝑖−1)∙𝛽(𝑏,𝑖)

𝑍(𝑿)
∙ 𝑓𝑢𝑛𝑐 (S21)

The gradient of equation (S4) with respect to parameter 𝑈 is:

𝜕𝑠(𝑃𝜃
𝑙,𝐷𝜏)

𝜕𝑈𝑎,ℎ
= ∑ [�̃�(𝑎, 𝑖) ∙ 𝐻𝑎,ℎ(𝑿, 𝑖, 𝑊)]𝐿

𝑖=1 (S22)

Where �̃�(𝑎, 𝑖) =
𝛼𝜏(𝑎,𝑖)∙𝛽(𝑎,𝑖)

𝑍(𝑿)
+

𝛼(𝑎,𝑖)∙𝛽𝜏(𝑎,𝑖)

𝑍(𝑿)
−

𝛼(𝑎,𝑖)∙𝛽(𝑎,𝑖)

𝑍(𝑿)
∙ 𝑓𝑢𝑛𝑐 (S23)

==

S2. More details about the DeepCNF model

Supplemental Figure 1. Illustration of a DeepCNF. Here 𝑖 is the position index and 𝑋𝑖 the associated input

features, 𝐻𝑘 represents the 𝑘-th hidden layer, and 𝑌 is the output label. All the layers from the 1
st
 to the K

th

(i.e., top layer) form a DCNN with parameter 𝑊𝑘{𝑘 = 1,2, … , 𝐾}. The K
th

 layer and the label layer form a CRF,

in which the parameter 𝑈 specifies the relationship between the output of the K
th

 layer and the label layer and

𝑇 the binary relationship between adjacent labels. Windows size is set to 3 only for illustration.

As shown in Supplemental Figure 1, the DeepCNF has three architecture hyper-parameters: (a) the

number of neurons at each layer; (b) the window size at each layer; and (c) the number of the hidden

layers. We train the model parameters (i.e., U, T, W) of DeepCNF simultaneously. We first calculate

the gradient for parameter 𝑈, 𝑇 and then for parameter 𝑊. Below we explain how to calculate the

DeepCNF in a feed-forward way and the gradient by back-propagation.

S2.1 Feed-forward function of DCNN (deep convolutional neural network)

Supplemental Figure 2 shows two adjacent layers of DCNN. Let 𝑀𝑘 be the number of neurons for a

single position of the 𝑘-th layer. Let 𝑋𝑖(ℎ) be the ℎ-th feature at the input layer for residue 𝑖 and

𝐻𝑖
𝑘(ℎ) denote the output value of the ℎ-th neuron of position 𝑖 at layer 𝑘. When 𝑘 = 1, 𝐻𝑘 is

actually the input feature 𝑿. Otherwise, 𝐻𝑘 is a matrix of dimension 𝐿 × 𝑀𝑘. Let 2𝑁𝑘 + 1 be the

window size at the 𝑘-th layer. Mathematically, 𝐻𝑖
𝑘(ℎ) is defined as follows.

𝐻𝑖
𝑘(ℎ) = 𝑋𝑖(ℎ), if 𝑘 = 1 ()

𝐻𝑖
𝑘+1(ℎ) = 𝜋 (∑ ∑ (𝐻𝑖+𝑛

𝑘 (ℎ′) ∗ 𝑊𝑛
𝑘(ℎ, ℎ′))

𝑀𝑘
ℎ′=1

𝑁𝑘
𝑛=−𝑁𝑘

), if 𝑘 < 𝐾 ()

𝐻ℎ(𝑿, 𝑖, 𝑊) = 𝐻𝑖
𝐾(ℎ), if 𝑘 = 𝐾 (S24)

Meanwhile, 𝜋 is the activation function, either the sigmoid (i.e., (𝑥) = 1/(1 + exp(−𝑥))) or the

tanh (i.e., 𝜋(𝑥) = (1 − exp(−2𝑥))/(1 + exp(−2𝑥))) function. 𝑊𝑛
𝑘 (−𝑁𝑘 ≤ 𝑛 ≤ 𝑁𝑘) is a 2D

weight matrix for the connections between the neurons of position 𝑖 at layer 𝑘 and the neurons of

position 𝑖 + 1 at layer 𝑘 + 1. 𝑊𝑛
𝑘 is shared by all the positions in the same layer, so it is

position-independent. Here ℎ and ℎ’ index two neurons at the 𝑘 -th and (𝑘 + 1) -th layers,

respectively.

Supplemental Figure 2. The feed-forward connection between two adjacent layers of DCNN.

S2.2 Calculation of gradient by back-propagation

The error function from the CRF part at position 𝑖 for a certain label 𝑢 is

𝐸𝑖(𝑢) = ∑ ∑ 𝛾𝜇𝑙 (�̃�𝑠
𝑙(𝑢, 𝑖) ∙ 𝑣(𝑃𝜃

𝜇−𝑙 , 𝐷!𝜏) + 𝑠(𝑃𝜃
𝑙 , 𝐷𝜏) ∙ �̃�𝑣

𝑢−𝑙(𝑢, 𝑖))
𝜇
𝑙=0

𝑑
𝜇=0 , where �̃�𝑠

𝑙 and �̃�𝑣
𝑢−𝑙 are

derived according to equation (S23) with respect to function 𝑠(𝑃𝜃
𝑙 , 𝐷𝜏) and 𝑣(𝑃𝜃

𝜇−𝑙 , 𝐷!𝜏) ,

respectively. As shown in Supplemental Figure 3, we can calculate the neuron error values as well as

the gradients at the 𝑘-th layer by back-propagation as follows.

𝐸𝑖
𝑘(ℎ) = 𝜂(𝐻𝑖

𝑘(ℎ)) ∗ ∑ [𝐸𝑖(𝑢) ∗ 𝑈𝑎,ℎ]𝑢 if 𝑘 = 𝐾 ()

𝐸𝑖
𝑘(ℎ) = 𝜂(𝐻𝑖

𝑘(ℎ)) ∗ ∑ ∑ [𝐸𝑖+𝑛
𝑘+1(ℎ′) ∗ 𝑊𝑛

𝑘(ℎ′, ℎ)]
𝑀𝑘+1

ℎ′=1
𝑁𝑘
𝑛=−𝑁𝑘

 if 𝑘 < 𝐾 (S25)

Where 𝜂 is the derivative of the activation function 𝜋. In particular, it is 𝜂(𝑥) = (1 − 𝑥) ∗ 𝑥 and

𝜂(𝑥) = 1 − 𝑥 ∗ 𝑥 for the sigmoid and tanh function, respectively. 𝑬𝒌 is the neuron error value

matrix at the 𝑘-th layer, with dimension 𝐿 × 𝑀𝑘. Finally, the gradient of the parameter 𝑊 at the

𝑘-th layer is:

∇𝑊𝑛
𝑘(ℎ,ℎ′)= ∑ [𝐸𝑖

𝑘+1(ℎ) ∗ 𝐻𝑖+𝑛
𝑘 (ℎ′)]𝐿

𝑖=1 (S26)

==

Supplemental Figure 3. Illustration of how to calculate the gradient of DCNN from layer 𝑘 + 1 to 𝑘.

S3. Datasets

We use five datasets to train, validate, and evaluate our AUCpreD method. In brief, the Disorder723

dataset [1] is used for determining the model architecture; the UniProt90 dataset [2] is used for

training the model parameter; two CASP datasets (i.e., CASP9 [3] and CASP10 [4]) and a recent

CAMEO dataset are used for evaluating the model performance. We analyzed the overall

order/disorder property of these datasets, as well as the internal disordered regions with different

length (shown in Supplemental Table 1). In addition, we use the Human proteome to evaluate the

large-scale prediction for different methods.

S3.1 Dataset used for determining the model architecture

We use Disorder723 dataset (http://download.igb.uci.edu/disorder.dataset) to compare different

objective functions as well as to determine the model architecture. Disorder723 is a dataset built by

Cheng et al. [1] in May 2004, consists of 723 non-redundant chains which span at least 30 amino

acids and were solved by X-ray diffraction with a resolution of around 2.5 Å. A ten-fold

cross-validation on this Disorder723 dataset was performed. In particular, the original dataset was

randomly partitioned into 10 equal-sized subsamples. Among the 10 subsamples, a single subsample

is retained as the validation data for testing the model, while the remaining nine are used as training

data.

Supplemental Table 1. Number of proteins, order/disorder residues, terminal region disorder residues, and

properties of the internal (i.e., non-terminal) disordered regions with different lengths, on the six datasets used in

this work.

Datasets Disorder723 UniProt90 CASP9 CASP10 CAMEO

Overall properties

Proteins 723 13,800 117 94 229

Ordered residues 201,703 3,374,912 23,656 22,688 56,471

Disordered

residues

13,909 178,340 2,679 1,664 5,936

N-terminal

disordered

residues

4,622 67,391 1,060 814 2,540

C-terminal

disordered

residues

4,505 55,398 519 258 1,867

Number of internal disordered regions

1-5 492 2,611 118 73 70

6-15 226 2,730 52 31 56

16-25 45 505 11 6 10

>25 19 291 3 2 13

Length of internal disordered regions

1-5 964 8,082 272 163 209

6-15 2,083 24,938 494 261 492

16-25 883 9,775 215 113 187

>25 852 12,686 119 55 641

http://download.igb.uci.edu/disorder.dataset

S3.2 Dataset used for training the model parameter
After the model architecture was determined, we further trained our model using UniProt90 dataset [2].

The sequences and the corresponding order/disorder labels from this dataset were downloaded from

http://mobidb.bio.unipd.it/lsd. Note that the original UniProt90 dataset were filtered according to the

following three criteria: (i) each protein should be released before May-01-2010, which is the starting date

of CASP9; (ii) each protein share no more than 25% sequence identity to those sequences from the CASP

and CAMEO datasets; and (iii) unannotated amino acid labeled as 'X' are discarded. The remaining

non-redundant UniProt90 dataset contains 13,800 proteins with only two labels: 1 for disorder and 0 for

order.

S3.3 Dataset for evaluation the model performance

We evaluate the model performance with other state-of-the-art methods on three publicly available dataset:

CASP9 (http://predictioncenter.org/download_area/CASP9/targets/casp9.DR_targets.tgz), CASP10

(http://predictioncenter.org/download_area/CASP10/targets/casp10.DR_targets.tgz), and CAMEO of the

recent one year (http://www.cameo3d.org/sp/1-year/) (from 2014-09-16 to 2015-09-16). CASP9 dataset

contains 117 sequences, CASP10 contains 94, and CAMEO of the recent one year has 229 proteins. Note

that we merge CASP9 and CASP10 into the CASP dataset. Among the CAMEO dataset, we only take hard

targets according to the official definition.

Supplemental Figure 4. An example of MobiDB order/disorder annotation and prediction result for one Human

protein (UniProt entry Q9Y613). Overview (A) and detailed (B) order/disorder annotations and predictions,

where color red (blue) indicates disordered (ordered) residues/regions from experimental and/or manual curation,

and color orange (cyan) indicates disordered (ordered) residues/regions from prediction. In this work, we only

evaluate the performance of different methods on experimental and/or manual curated order/disorder regions

(i.e., color blue and red).

S3.4 Dataset for large-scale prediction
The large-scale prediction across entire Human proteome is an important application of disorder prediction

[5]. Here we derive each Human protein with UniProt entry from MobiDB (http://mobidb.bio.unipd.it/).

Since the longer the protein length, the more time required to generate the evolution information for

prediction. We then restricted to protein of length less than 1700 amino acids, which results in 19,385 valid

http://mobidb.bio.unipd.it/lsd
http://predictioncenter.org/download_area/CASP9/targets/casp9.DR_targets.tgz
http://predictioncenter.org/download_area/CASP10/targets/casp10.DR_targets.tgz
http://www.cameo3d.org/sp/1-year/
http://mobidb.bio.unipd.it/

Human proteins. Note that MobiDB is designed in three layers in order of quality: (i) manual curation from

the DisProt database [6], (ii) experimental PDB information, and (iii) predictions [2]. In order to evaluate

and compare the prediction results of different methods, we only take the manual curation and

experimental PDB information for order/disorder regions. Among these regions, 1,066,878 are curated as

order and 97,815 as disorder. We show one example in Supplemental Figure 4.

==

S4. Determining the DCNN architecture hyper-parameters
The architecture of the DCNN in DeepCNF model is mainly determined by the following 3 factors

(see Supplemental Figure 1): (i) the number of hidden layers; (ii) the number of different neurons at

each layer; and (iii) the window size at each layer. We also compared three different methods for

training the DeepCNF model (sequence profile not used): maximum likelihood, maximum labelwise

accuracy, and maximum AUC. We conduct 10-fold cross-validation for each possible DCNN

architecture and each training method. To simplify the analysis, all the hidden layers have the same

number of neurons and the same windows size. As shown in Supplemental Figure 5, regardless of the

architecture, the AUC-maximization method greatly outperforms the other two in terms of the AUC

value. Our model has almost peak performance when it has 2 hidden layers, 50 different hidden

neurons at each layer, and windows size set to 11. Further increasing the number of layers and the

windows size does not result in significant improvement in AUC, regardless of the training method.

Supplemental Figure 5. Dependency of AUC with respect to the architecture of DCNN. (A) the number of

neurons, (B) window size, and (C) the number of hidden layers. Three different training methods: maximum

likelihood (blue), maximum labelwise accuracy (red) and maximum AUC (green).

==

S5. Performance on long disorder regions

To further illustrate the advantage of our method, we examine the prediction accuracy of long disorder

regions. As shown in Supplemental Table 2, on CAMEO targets, our method AUCpreD
p
 exceeds all

the others in terms of Mcc, AUC
pr

 and AUC on the disorder regions of at least 10 and 20 residues,

respectively. The per-residue Mcc obtained by AUCpreD
p
 are 0.46 and 0.40, respectively, higher than

the profile-based DisoPred3
A
 (0.39 and 0.34, respectively) and the template-based DisoPred3

T
 (0.41

and 0.35, respectively). Again, without using sequence profile, AUCpreD
a
 is comparable to

DisoPred3
T
 in terms of Mcc and AUC.

Supplemental Table 2. Per-residue performance on the CAMEO targets on long disorder regions.

Method Longer than 10 residues Longer than 20 residues

Acc Sens Spec Mcc AUCpr AUC Acc Sens Spec Mcc AUCpr AUC

 Predictors using sequence or template information

AUCpreDp 0.74 0.51 0.97 0.46 0.49 0.86 0.71 0.46 0.96 0.40 0.41 0.84

DeepCNF-Dp 0.70 0.44 0.95 0.40 0.41 0.83 0.69 0.43 0.95 0.35 0.33 0.81

Espritzp 0.73 0.56 0.89 0.34 0.39 0.79 0.70 0.52 0.89 0.29 0.32 0.77

DNdisorder 0.72 0.57 0.88 0.33 0.38 0.77 0.70 0.53 0.88 0.28 0.30 0.76

DisoPred3A 0.70 0.45 0.95 0.39 0.40 0.83 0.68 0.41 0.95 0.34 0.33 0.81

DisoPred3T 0.69 0.42 0.96 0.41 0.42 0.82 0.67 0.38 0.96 0.35 0.35 0.80

PrDOS-CNF 0.72 0.47 0.97 0.43 0.43 0.85 0.69 0.43 0.95 0.36 0.36 0.82

 Predictors without using sequence profile information

AUCpreDa 0.71 0.47 0.95 0.41 0.43 0.83 0.70 0.43 0.95 0.36 0.35 0.81

DeepCNF-Da 0.68 0.42 0.94 0.35 0.37 0.80 0.67 0.39 0.95 0.31 0.29 0.76

Espritza 0.73 0.60 0.87 0.33 0.36 0.79 0.71 0.56 0.87 0.28 0.31 0.77

IUpredS 0.68 0.43 0.93 0.32 0.33 0.78 0.66 0.40 0.93 0.28 0.25 0.77

IUpredL 0.67 0.42 0.92 0.30 0.29 0.75 0.67 0.42 0.92 0.28 0.25 0.75

==

S6. Performance on terminal and internal disorder regions

We evaluated the performance of all the predictors on terminal and internal disorder regions. We say a

residue is in a terminal region if and only if it is within 10 positions of a protein termini. As shown in

Supplemental Table 3, on CAMEO targets, AUCpreD
p
 exceeds all the others in terms of Mcc and

AUC on both terminal and internal regions. For internal regions, AUCpreD
p
 also has the best AUC

pr
.

In particular, AUCpreD
p
 has much better Mcc than the profile-based DeepCNF-D

p
, DisoPred3

A
,

DNdisorder and Espritz
p
. AUCpreD

a
 has comparable AUC and MCC to DisoPred3

A
 and DisoPred3

T
.

Supplemental Table 3. Per-residue performance on CAMEO targets on terminal and internal regions.

Method Terminal protein regions Internal protein regions

Acc Sens Spec Mcc AUCpr AUC Acc Sens Spec Mcc AUCpr AUC

 Predictors using sequence profile or template

AUCpreDp 0.75 0.83 0.68 0.51 0.72 0.85 0.68 0.38 0.98 0.39 0.38 0.84

DeepCNF-Dp 0.72 0.71 0.72 0.45 0.70 0.82 0.66 0.35 0.97 0.35 0.31 0.79

Espritzp 0.62 0.97 0.27 0.30 0.74 0.81 0.67 0.41 0.92 0.29 0.29 0.75

DNdisorder 0.67 0.83 0.52 0.31 0.69 0.78 0.64 0.34 0.93 0.27 0.27 0.72

DisoPred3A 0.72 0.74 0.70 0.43 0.68 0.79 0.65 0.33 0.96 0.33 0.32 0.80

DisoPred3T 0.73 0.73 0.74 0.46 0.69 0.80 0.64 0.30 0.98 0.34 0.34 0.79

PrDOS-CNF 0.73 0.75 0.71 0.45 0.68 0.81 0.66 0.35 0.97 0.36 0.35 0.80

 Predictors without using sequence profile

AUCpreDa 0.74 0.85 0.63 0.44 0.71 0.82 0.65 0.32 0.97 0.35 0.35 0.80

DeepCNF-Da 0.69 0.72 0.67 0.37 0.66 0.79 0.63 0.31 0.95 0.30 0.27 0.75

Espritza 0.59 0.98 0.19 0.25 0.74 0.81 0.68 0.45 0.90 0.28 0.28 0.74

IUpredS 0.67 0.87 0.47 0.34 0.65 0.76 0.62 0.28 0.95 0.25 0.26 0.74

IUpredL 0.64 0.48 0.80 0.30 0.57 0.69 0.63 0.33 0.93 0.24 0.23 0.71

==

Supplemental Reference

1. Cheng, J., Sweredoski, M.J., Baldi, P.: Accurate prediction of protein disordered regions by mining protein

structure data. Data mining and knowledge discovery 11, 213-222 (2005)

2. Di Domenico, T., Walsh, I., Martin, A.J., Tosatto, S.C.: MobiDB: a comprehensive database of intrinsic

protein disorder annotations. Bioinformatics 28, 2080-2081 (2012)

3. Monastyrskyy, B., Fidelis, K., Moult, J., Tramontano, A., Kryshtafovych, A.: Evaluation of disorder

predictions in CASP9. Proteins: Structure, Function, and Bioinformatics 79, 107-118 (2011)

4. Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A., Fidelis, K.: Assessment of protein

disorder region predictions in CASP10. Proteins: Structure, Function, and Bioinformatics 82, 127-137 (2014)

5. Walsh, I., Martin, A.J., Di Domenico, T., Tosatto, S.C.: ESpritz: accurate and fast prediction of protein

disorder. Bioinformatics 28, 503-509 (2012)

6. Sickmeier, M., Hamilton, J.A., LeGall, T., Vacic, V., Cortese, M.S., Tantos, A., Szabo, B., Tompa, P., Chen,

J., Uversky, V.N.: DisProt: the database of disordered proteins. Nucleic acids research 35, D786-D793 (2007)

